Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields (2025)

  • Marques Mota, F. et al. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem. Soc. Rev. 48, 205–259 (2019).

    Article CAS PubMed Google Scholar

  • Chu, S. et al. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article CAS PubMed Google Scholar

  • Gan, Y. et al. Carbon footprint of global natural gas supplies to China. Nat. Commun. 11, 824 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Tébar-Soler, C. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).

    Article PubMed Google Scholar

  • Zou, T. et al. ZnO-promoted inverse ZrO2–Cu catalysts for CO2-based methanol synthesis under mild conditions. ACS Sustain. Chem. Eng. 10, 81–90 (2021).

    Article Google Scholar

  • Jiang, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 6, 519–530 (2023).

    Article CAS Google Scholar

  • Das, S. et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49, 2937–3004 (2020).

    Article CAS PubMed Google Scholar

  • Yang, C. et al. Intrinsic mechanism for carbon dioxide methanation over ru-based nanocatalysts. ACS Catal. 13, 11556–11565 (2023).

    Article CAS Google Scholar

  • Aitbekova, A. et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J. Am. Chem. Soc. 140, 13736–13745 (2018).

    Article CAS PubMed Google Scholar

  • Vogt, C. et al. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article CAS Google Scholar

  • Lee, Y. H. et al. Role of oxide support in Ni based catalysts for CO2 methanation. RSC Adv. 11, 17648–17657 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Vogt, C. et al. Publisher Correction: Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 163–163 (2018).

    Article Google Scholar

  • Vogt, C. et al. Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nat. Commun. 12, 7096 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Lin, L. et al. Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. J. Energy Chem. 61, 602–611 (2021).

    Article CAS Google Scholar

  • Struijs, J. J. C. et al. Ceria-supported cobalt catalyst for low-temperature methanation at low partial pressures of CO2. Angew. Chem. Int. Ed. 62, e202214864 (2023).

    Article CAS Google Scholar

  • Parastaev, A. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020).

    Article CAS Google Scholar

  • Li, S. et al. Iron carbides: control synthesis and catalytic applications in COx hydrogenation and electrochemical HER. Adv. Mater. 31, 1901796 (2019).

    Article CAS Google Scholar

  • Zhang, Z. et al. Eu3+ doping-promoted Ni–CeO2 interaction for efficient low-temperature CO2 methanation. Appl. Catal. B 317, 121800 (2022).

    Article CAS Google Scholar

  • Ren, J. et al. Promotional effects of Ru and Fe on Ni/ZrO2 catalyst during CO2 methanation: a comparative evaluation of the mechanism. J. Energy Chem. 86, 351–361 (2023).

    Article CAS Google Scholar

  • Aziz, M. A. A. et al. CO2 methanation over Ni-promoted mesostructured silica nanoparticles: influence of Ni loading and water vapor on activity and response surface methodology studies. Chem. Eng. J. 260, 757–764 (2015).

    Article CAS Google Scholar

  • De Masi, D. et al. Engineering iron–nickel nanoparticles for magnetically induced CO2 methanation in continuous flow. Angew. Chem. Int. Ed. 59, 6187–6191 (2020).

    Article Google Scholar

  • Li, J. et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal. 9, 6342−–66348 (2019).

    Article Google Scholar

  • Ye, R. et al. Boosting low-temperature CO2 hydrogenation over Ni-based catalysts by tuning strong metal–support interactions. Angew. Chem. Int. Ed. 63, e202317669 (2024).

    Article CAS Google Scholar

  • Ma, L. et al. Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy. Chem. Eng. J. 446, 137031 (2022).

    Article CAS Google Scholar

  • Wu, C. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 11, 5767 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Liu, X. et al. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1−x/Cu interfaces for methanol synthesis from CO2. Angew. Chem. Int. Ed. 61, e202202330 (2022).

    Article CAS Google Scholar

  • Xu, Y. et al. Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation. Appl. Catal. B 344, 123656 (2024).

    Article CAS Google Scholar

  • Xu, Y. et al. Insights into the interfacial structure of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: effects of Cu-supported nano-ZrO2 inverse interface. Chem. Eng. J. 470, 144006 (2023).

    Article CAS Google Scholar

  • Alarcón, A. et al. Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation. Fuel Process. Technol. 193, 114–122 (2019).

    Article Google Scholar

  • Wang, C. et al. Nickel catalyst stabilization via graphene encapsulation for enhanced methanation reaction. J. Catal. 334, 42–51 (2016).

    Article CAS Google Scholar

  • Xu, X. et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 11, 5762–5775 (2021).

    Article CAS Google Scholar

  • Navarro-Jaén, S. et al. Size-tailored Ru nanoparticles deposited over γ-Al2O3 for the CO2 methanation reaction. Appl. Surf. Sci. 483, 750–761 (2019).

    Article Google Scholar

  • Zhang, Y. et al. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis. ACS Catal. 10, 12967–12975 (2020).

    Article CAS Google Scholar

  • Zhao, Z. et al. Effect of rutile content on the catalytic performance of Ru/TiO2 catalyst for low-temperature CO2 methanation. ACS Sustain. Chem. Eng. 9, 14288–14296 (2021).

    Article CAS Google Scholar

  • Ashok, J. et al. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 356, 471–489 (2020).

    Article CAS Google Scholar

  • Gao, J. et al. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 5, 22759–22776 (2015).

    Article CAS Google Scholar

  • Yang, J. et al. A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion. Angew. Chem. Int. Ed. 59, 18522–18526 (2020).

    Article CAS Google Scholar

  • Wang, X.-F. et al. WO3 boosted water tolerance of Pt nanoparticle on SO42−–ZrO2 for propane oxidation. Appl. Catal. B 338, 123000 (2023).

    Article CAS Google Scholar

  • Hu, B. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties. Adv. Mater. 34, 2107721 (2022).

    Article CAS Google Scholar

  • Feng, W.-H. et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrOx oxide catalysts. ACS Catal. 11, 4704–4711 (2021).

    Article CAS Google Scholar

  • Zhang, J. et al. Engineering Cu+/CeZrOx interfaces to promote CO2 hydrogenation to methanol. J. Energy Chem. 77, 45–53 (2023).

    Article CAS Google Scholar

  • Lee, K. et al. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx. Nat. Commun. 14, 819 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhao, H. et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 5, 818–831 (2022).

    Article CAS Google Scholar

  • Wang, C. et al. Ru-based catalysts for efficient CO2 methanation: synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 16, 12153–12164 (2023).

    Article CAS Google Scholar

  • Xie, Y. et al. Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts. ACS Catal. 12, 10587–10602 (2022).

    Article CAS Google Scholar

  • Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020).

    Article CAS Google Scholar

  • Tripodi, A. et al. Carbon dioxide methanation: design of a fully integrated plant. Energy Fuels 34, 7242–7256 (2020).

    Article CAS Google Scholar

  • Peters, M. S. et al. Plant Design and Economics for Chemical Engineers (McGraw-Hill, 2003).

    Google Scholar

  • Tang, X. et al. Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane. Nat. Commun. 15, 3115 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article CAS Google Scholar

  • Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article CAS Google Scholar

  • Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article CAS PubMed Google Scholar

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article Google Scholar

  • Monkhorst, H. J. et al. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article Google Scholar

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article Google Scholar

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article CAS Google Scholar

  • Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Aron Pacocha

    Last Updated:

    Views: 5521

    Rating: 4.8 / 5 (68 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Aron Pacocha

    Birthday: 1999-08-12

    Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

    Phone: +393457723392

    Job: Retail Consultant

    Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

    Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.